ACCTA, Inc. 3534 Jessie Ct Saint Paul, MN 55125 www.accta.com

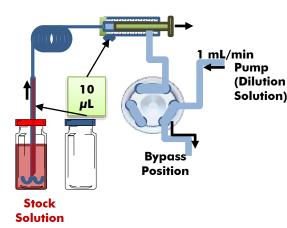
Use Your Autosampler to Make Calibration Standards Merlin K. L. Bicking, Ph. D. ACCTA, Inc.

INTRODUCTION AND GENERAL SETUP

- We describe a feature of many autosamplers that produces dilutions and mixtures.
- This approach is useful when:
- High-value standard solutions must be prepared in a minimum volume with maximum accuracy.
- Classic analytical dilutions involve large volumes of solvent and multiple volumetric flasks.

Solutions Required

- Stock Solution: Must be in compatible solvent
- Receiving Vial(s):
 - Clean, empty, no cap
 - Vial inserts can be used for small volume dilutions


HPLC System

- Disconnect column
- Use union or place column inlet tubing into waste container
- Program pump to deliver desired dilution solution
- Set flow to 0.5 1.0 mL/min
- Any flow can be used, but the system pressure should be as low as possible
- Equilibrate system with flow through autosampler loop "Mainpass" in Agilent systems

HOW DOES IT WORK?

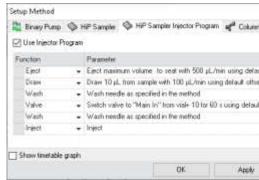
Step 1: Draw Stock Solution Draw desired volume of stock solution using "Draw" command

Step 2: Dilution Use "Valve" or "Main In" command to switch injection valve to Mainpass into the receiving vial for a specified time

Position The Receiving Vial now contains 1 mL of solution. which includes the original 10 Receiving μ L of side solution. (a 1:100 dilution) Vial

Step 3: Mix/agitate the receiving vial thoroughly.

Receiving Vial


After Procedure

Receiving

Vial After Shaking

Other Method Settings

- Pump
- Flow: 1 mL/min
- Stop Time: 0.1 min.
- Injector
- Settings for needle wash Column
- None needed
- Detector
- Default settings

CASE STUDY 1: CONSUMER PRODUCT INGREDIENT

Method

- Prepare 4 dilutions of a single stock solution in methanol for analysis of different products
- 7%, 3%, 1%, and 5%
- Pump Flow = 1 mL/min methanol Locations
- Stock Solution in P1-A1 (S)
- Wash vial in P1-A2 (W)
- 7% in P1-A3
- 3% in P1-A4
- 1% in P1-A5
- 5% in P1-A6

Results

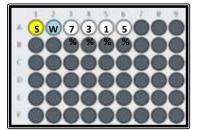
Compare Replicate Preparations

	Avg Area
Prep 1	1574.65
Prep 2	1578.40
Prep 3	1581.96
Avg	1578.3
SD	3.65
RSD	0.23

			Solvent
	Avg Area	Prep Time	Used
Manual Prep	1577.650	20 min	400 mL
Autosampler Prep	1578.337	12 min	15 mL
% Difference	0.04%		

	Why?
100	The dilution step pumps the
	solution into the bottom of
	the vial, and complete mixing
The second se	does not occur.
Constant of Constant	

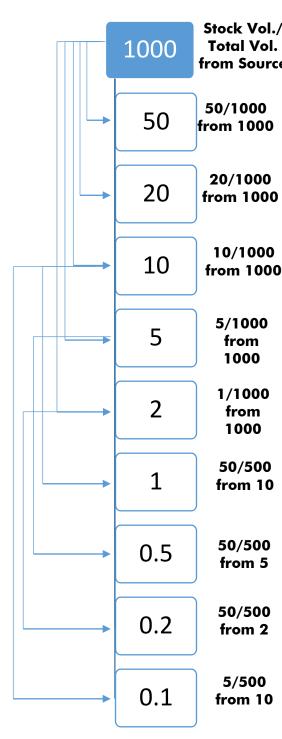
EXAMPLE INJECTOR PROGRAM


DpenLab ChemSt

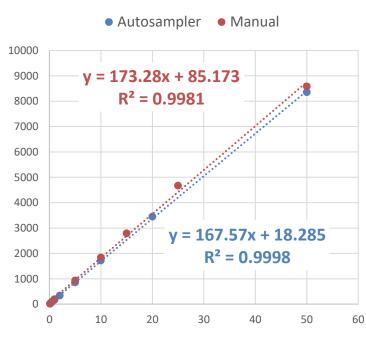
lumn Comp.	💙 DAD	종 Instrume	Curves	×	Needed to reset a position.
					This is the volume
lefault offset sitset				1	Wash options wil model.
lault offset					This example use sample. Depend have to specify a and column.
ala I	Can	cel	Help		Wash options wil model.
					Needed to compl

tation	C.01.09 – 1:100 Dilution
**	Needed to reset sampling syringe to home position.
	This is the volume of stock solution.
	Wash options will vary depending on your model.
	This example uses a position relative to the sample. Depending on your model, you may have to specify a relative position for tray, row, and column.
elp	Wash options will vary depending on your model.
	Needed to complete the process.

- Injection/Sequence Settings
- Set the sample as the location of the Stock solution
- Or, you can set a fixed location in the program and the sample location is ianored.

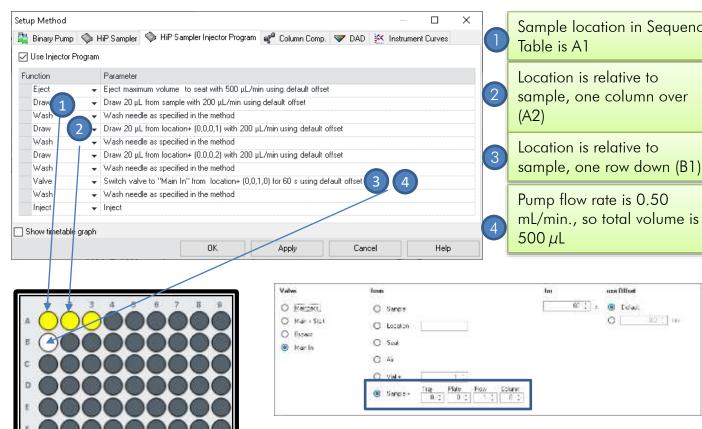


Compare Preparation Levels


-	-		
Level, %	Avg Area	RF	
7.00	1574.008	224.9	
3.00	670.017	223.3	
1.00	222.654	222.7	
5.00	1115.356	223.1	
	Avg	223.0	
	SD	0.345	
	RSD	0.15	

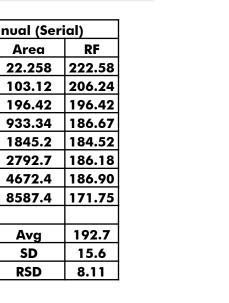
Compare with manually prepared standard

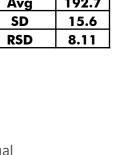
CASE STUDY 2: DNPH DERIVATIVE



		Autos	Man			
/	Lvl	Amt	Area	RF	Amt	
	1	0.1	17.231	172.31	0.1	2
е	2	0.2	34.431	172.16	0.5	1
	3	0.5	85.098	170.20	1	1
	4	1	171.45	171.45	5	9
	5	2	343.7	171.85	10	1
	6	5	859.47	171.89	15	2
	7	10	1724.8	172.48	25	4
	8	20	3449.2	172.46	50	8
	9	50	8359.5	167.19		
			Avg	171.3		
			SD	1.71		
			RSD	1.00		

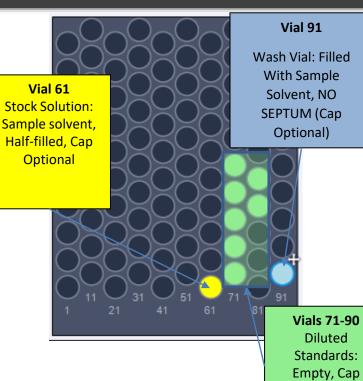
CASE STUDY 3: MAKING MIXTURES

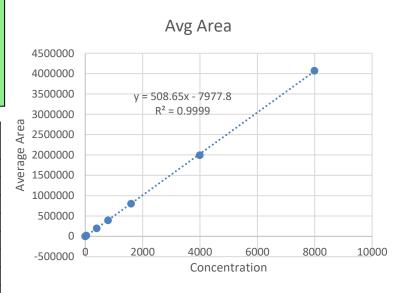

Prepare a mixture of three components, each diluted 1:25 from three individual stock solutions



The Sample+ option allows you to specify a position relative to the Sample location. You specify the change for Tray, Plate, Row, and Column.

CASE STUDY 4: WIDE RANGE CURVE FOR GC





Sample location in Sequence

mos Olfost 0 0.0 7 141

		_		
Level	Diluton	Conc	Avg Area	RF
1	10000	0.7992	368.600047	461.2
2	500	15.984	7275.203026	455.2
3	200	39.96	18492.79934	462.8
4	20	399.6	195377.5766	488.9
5	10	799.2	393765.4735	492.7
6	5	1598.4	803435.2665	502.6
7	2	3996	1993227.733	498.8
8	Stock	7992	4073564.138	509.7
			Avg	484.0
			SD	21.1
			RSD	4.4

*Note: This dilution requires use of a vial insert that can hold a minimum of 100 uL.

Concentration

10,000 (Stock)

5,000

2,000

1,000

500

50

20

SUMMARY

Limitations

Optional

Dilution Level

2X

5X

10X

20X

200X

500X

10,000X

- Small dilution factors (e.g., 1:2) are limited if large volumes are required. Vial inserts would be required
- e.g., 50 / 100

UHPLC systems often have smaller injection limits

Requires use of inserts

Some UHPLC pumps may not be as reliable at the low pressures observed with this method

Mixing/agitation is required, so complete automation is not possible (yet).

Future modifications may solve this problem.

Advantages

Programmable autosamplers can be used to prepare mixtures and/or calibration standards with high accuracy

Options will vary across models and software versions, but the general procedure is the same. Solvent use is significantly reduced

Use of volumetric glassware is significantly reduced

Only preparation of stock solution is required

Smaller amounts of standards are required

- No need for storage of dilutions.
- Make what you need when you need it.

Completion time is usually less than the corresponding manual method and does not re uire staff time during the program (in most cases).